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Introduction



  

Platform and Applications in AGL

● Platform
● Base system incl. libraries
● Built with the Yocto 

Project
● Application framework
● Other middleware

→ Part of 
     filesystem image

● Applications & Services
● Services provide APIs
● Applications consume 

APIs
● Built with SDK
● Packaged as .wgt

→ Installed at
     runtime.



  

What to do where ?

● You work on the 
Platform if you deal 
with a:
● system library
● kernel driver
● BSP
● framework (itself)

  → low level 

(platform point of view)

● You work on the 
Applications/Services 
if you deal with a:

● Service (agl-service-*)
● Application

  → high level

(platform point of view)



  

''Platform''

● The outcome here is usually a filesystem image  but it can 
also be a package feed

● We have two options to inject tests in the process
● 'Early' as compile-time tests

– Actually a great option as we get feedback very early – at compile-time 
– But this usually does not work well as we're cross-compiling and 

cannot execute the generated binaries
● 'Late' once the image is created and booted

– This works well but requires the target to be deployed and booted
– For CI this needs to be automated



  

''Applications & Services''

● The outcome of the compilation is one ore 
multiple *.wgt file(s)

● Code is compiled for the target arch
● wgt files need to be installed at runtime 

(dynamic IDs / smack labels for security)
● Thus tests need to be executed at runtime



  

Scope

● Let's explore
● How to add tests to the AGL 'platform'
● How to add tests to AGL 'Apps / Services'
● How to run the tests on the target
● Let's start small – inline definitions
● Test definitions from a git repo



  

How to add tests to the AGL 'platform'



  

Platform (1)

● The Platform is built using the YP 
● As discussed – compile-time tests would allow as to 

fail early , but we cannot execute the code if cross-
compiled

● But what can we do:
● system libraries and programs usually come with a 

testsuite (aka 'make test')
● you have your own testsuite ?
● let's use it ! 



  

Platform (2)

● The YP has a feature for this called ptest
● In principle a ptest is the 'make test' packaged
● It can then be deployed on the target and 

executed using ptest-runner



  

Platform (3)

from zlib_1.2.11.bb:
SRC_URI += "file://run-ptest"
inherit ptest
do_compile_ptest() {

oe_runmake test
}
do_install_ptest() {

install ${B}/Makefile   ${D}${PTEST_PATH}
install ${B}/example    ${D}${PTEST_PATH}
install ${B}/minigzip   ${D}${PTEST_PATH}
install ${B}/examplesh  ${D}${PTEST_PATH}
install ${B}/minigzipsh ${D}${PTEST_PATH}

# Remove buildhost references...
sed -i -e "s,--sysroot=${STAGING_DIR_TARGET},,g" \

-e 's|${DEBUG_PREFIX_MAP}||g' \
 ${D}${PTEST_PATH}/Makefile

}
RDEPENDS_${PN}-ptest += "make"

wrapper script for target

compilation procedure 
for testsuite

install test binaries

adapt scripts/path 
to target execution

if necessary

declare (undetectable)
 runtime dependencies
 for tests (e.g. make)



  

Platform (4)

● How is it added to the filesystem ?
● To add package testing to your build, 

set the DISTRO_FEATURES and EXTRA_IMAGE_FEATURES

DISTRO_FEATURES_append = " ptest" 
EXTRA_IMAGE_FEATURES += "ptest-pkgs"

● Shorthand is the agl-ptest feature for aglsetup.sh
● All ptest files are installed in 

/usr/lib/<package>/ptest



  

Platform (5)

● How is it executed ?
● The "ptest-runner" package installs a 

"ptest-runner" which loops through all installed 
ptest test suites and runs them in sequence. 



  

How to add tests to AGL 
'Apps / Services'
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Applications and Services (1)

● For the applications and services, we actually 
face multiple areas
● we need to test the highlevel API calls of the 

services 
● we need to test the application logic ((and UI))
● we want reports on the code coverage



  

Applications and Services (2)

● For testing the highlevel calls, there is work in 
progress to use lua scrips for this task:
● afb-test

● gcov based code-coverage reporting available as well

● Final goal: 
make this part of every reference app and run for 
each changeset



  

Applications and Services (4)

● Common to all:
● they need to be executed on the target
● partially with performance penalty (gcov)
● for automation, this means we add a wrapper script 

to each service or application to exec the procedure
● This is being called through a qa-testdefinition
● Executed in the CIAT infra



  

How to run the tests on the target



  

How to run it on the target (1)

● Manual:
● Platform:

– ptest: either by ptest-runner or 
           call run-ptest script directly

– All ptest files are installed in /usr/lib/<package>/ptest
● Applications/Services

– wrapper script required as entry point for CI
● needs to be in predefined location /usr/share/agl-test/<pgkname>.sh

– tbd if this is part of the app templates
– of course manual runs on the terminal or shell as well



  

How to run it on the target (2)

● Common issues:
● needs to run on target 
● we need a common reporting

– agreement is to use the KernelCI/Fuego json format
– alternative: tap



  

LAVA

● AGL uses LAVA for board/test automation and hosts an instance on 
https://lava.automotivelinux.org

● Current remote labs:
● lab-AGL-core
● lab-baylibre
● lab-iotbzh

● Account 
requests via
JIRA only

(no LFID)



  

LAVA Job Definition

sample-job.yaml

● Is a yaml style file
● contains

● metadata for the job
● action/deploy section

– files to be used
● boot section
● test section

metadata, notifier

action / deploy

boot

test



  

Test section

● One or multiple 
● inline
● from git repo
● uses yaml files
● lava-test-* are markers

– required for processing
– used also for 

cross-referencing



  

Test section details (inline/git)

- test:
    [..]
    definitions:
        - repository:
            metadata:
                format: Lava-Test Test Definition 1.0
                name: smoke-tests-basic
                description: "Basic test command for AGL images"
            run:
                steps:
                    - agl-basic-test-shell-command
          from: inline
          name: agl-dut-inline-basic
          path: inline/agl-dut-inline-fake-filename.yaml
        - repository: git://git.automotivelinux.org/src/qa-testdefinitions.git
          from: git
          path: test-suites/short-smoke/smoke-tests-basic.yaml
          name: smoke-tests-basic
        - repository: https://git.linaro.org/lava-team/lava-functional-tests.git
          from: git
          path: test-suites/short-smoke/service-check.yaml
          name: service-check



  

Example: add a 'systemd service up' check

● https://git.automotivelinux.org/src/qa-testdefinitions/tree/
test-suites/short-smoke/service-check.yaml

[...]
run:

    steps:

        - "cd common/scripts"

        - "./service-check-gfx.sh"

https://git.automotivelinux.org/src/qa-testdefinitions/tree/


  

Example: add a 'systemd service up' check

● https://git.automotivelinux.org/src/qa-testdefinitions/tree/
common/scripts/service-check-gfx.sh

https://git.automotivelinux.org/src/qa-testdefinitions/tree/


  

Now its your turn:

● We need you to add your service checks !
● in above script

● We need you to add your testcases !
● in qa-testdefinitions

– e.g. can
– e.g. audio playback / reception
– e.g. app lifecycle (install/uninstall/start/stop)

● Next, let's construct two examples and run them on 
lava.automotivelinux.org



  

Let's start small – inline definitions



  

inline testdefinition

● All is part of the lava job definition (this 'inline')
● Quick and easy, but only usefull for 

development & debuging & ad-hoc



  

inline testdefinition

●



  

● Let's try:
● https://lava.automotivelinux.org/scheduler/job/917

/resubmit

https://lava.automotivelinux.org/scheduler/job/917/resubmit
https://lava.automotivelinux.org/scheduler/job/917/resubmit


  

Test definitions from a git repo



  

Testdefinition from git

● Lava job definition references git repo and test 
yaml

● Can be shared and repeated across multiple 
instances of lava

● Persistent across single lava jobs



  

Tests from a git repo

● AGL hosts such a repo under
● src/qa-testdefinitions

● Other sources are e.g.
● https://git.linaro.org/qa/test-definitions.git

https://git.linaro.org/qa/test-definitions.git


  

sample-test-from-repo

Let's write a sample yaml
metadata:
    format: Lava-Test Test Definition 1.0
    name: sample-test
    description: "Sample"
    maintainer:
        - your.name@isp.net
    os:
        - openembedded
    scope:
        - functional

run:
    steps:
        - lava-test-case sample-pwd --shell pwd
        - lava-test-case sample-uname --shell uname -a



  

sample-test-from-repo

Or the steps-script is part of the git repo as well:
metadata:
    format: Lava-Test Test Definition 1.0
    name: sample-test-script
    description: "Sample with script"
    maintainer:
        - your.name@isp.net
    os:
        - openembedded
    scope:
        - functional

run:
    steps:
        - "cd common/scripts"
        - "./service-ids-check.sh"



  

sample-test-from-repo

Or the steps-script is part of the git repo as well:
metadata:
    format: Lava-Test Test Definition 1.0
    name: sample-test-script
    description: "Sample with script"
    maintainer:
        - your.name@isp.net
    os:
        - openembedded
    scope:
        - functional

run:
    steps:
        - "cd common/scripts"
        - "./service-ids-check.sh"



  

Referencing a git repo in lava job



  

Sample job in lava ...

● https://lava.automotivelinux.org/scheduler/job/
918/resubmit

https://lava.automotivelinux.org/scheduler/job/918/resubmit
https://lava.automotivelinux.org/scheduler/job/918/resubmit


  

Call to action!



  

Action Required !

● For your PLATFORM component (libraries etc.), 
make sure there is a Yocto Project compatible 
ptest

● For your APPLICATION make sure to have a 
wrapper script for the test on the target 
available (could be already the case)

● For your APPLICATION: write a testdefinition 
yaml and upload it to qa-testdefinitions repo



  

Whats next ?



  

Next steps

● Work on application test workflow
● Generalize and make part of app templates
● Enable API and coverage tests

● Join the CIAT calls an tuesdays to discuss 
platform and app testing further



  

QA



  

Thank you.

Contact: 

jsmoeller@linuxfoundation.org



  

References

● 2017 AMM Talk on writing new tests: 
http://bit.ly/2ll5SVy

● ptest: https://wiki.yoctoproject.org/wiki/Ptest
● gcov wip: http://bit.ly/2M4CWMQ
● Writing tests for lava: http://bit.ly/2ywcDgQ

http://bit.ly/2ll5SVy
http://bit.ly/2M4CWMQ
http://bit.ly/2ywcDgQ
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