

Tutorial: Writing a LAVA Test Definition and
Running it in the AGL Infra

AMM Dresden 2018

Jan-Simon Möller
Release Manager, AGL , The Linux Foundation

jsmoeller@linuxfoundation.org,
DL9PF @IRC and elsewhere

Image: public domain

Dipl.-Ing. Jan-Simon Möller

jsmoeller@linuxfoundation.org

'DL9PF' on #freenode

AGL Release Manager, EG CIAT Lead

mailto:jsmoeller@linuxfoundation.org

Introduction

Platform and Applications in AGL

● Platform
● Base system incl. libraries
● Built with the Yocto

Project
● Application framework
● Other middleware

→ Part of
 filesystem image

● Applications & Services
● Services provide APIs
● Applications consume

APIs
● Built with SDK
● Packaged as .wgt

→ Installed at
 runtime.

What to do where ?

● You work on the
Platform if you deal
with a:
● system library
● kernel driver
● BSP
● framework (itself)

 → low level

(platform point of view)

● You work on the
Applications/Services
if you deal with a:

● Service (agl-service-*)
● Application

 → high level

(platform point of view)

''Platform''

● The outcome here is usually a filesystem image but it can
also be a package feed

● We have two options to inject tests in the process
● 'Early' as compile-time tests

– Actually a great option as we get feedback very early – at compile-time
– But this usually does not work well as we're cross-compiling and

cannot execute the generated binaries
● 'Late' once the image is created and booted

– This works well but requires the target to be deployed and booted
– For CI this needs to be automated

''Applications & Services''

● The outcome of the compilation is one ore
multiple *.wgt file(s)

● Code is compiled for the target arch
● wgt files need to be installed at runtime

(dynamic IDs / smack labels for security)
● Thus tests need to be executed at runtime

Scope

● Let's explore
● How to add tests to the AGL 'platform'
● How to add tests to AGL 'Apps / Services'
● How to run the tests on the target
● Let's start small – inline definitions
● Test definitions from a git repo

How to add tests to the AGL 'platform'

Platform (1)

● The Platform is built using the YP
● As discussed – compile-time tests would allow as to

fail early , but we cannot execute the code if cross-
compiled

● But what can we do:
● system libraries and programs usually come with a

testsuite (aka 'make test')
● you have your own testsuite ?
● let's use it !

Platform (2)

● The YP has a feature for this called ptest
● In principle a ptest is the 'make test' packaged
● It can then be deployed on the target and

executed using ptest-runner

Platform (3)

from zlib_1.2.11.bb:
SRC_URI += "file://run-ptest"
inherit ptest
do_compile_ptest() {

oe_runmake test
}
do_install_ptest() {

install ${B}/Makefile ${D}${PTEST_PATH}
install ${B}/example ${D}${PTEST_PATH}
install ${B}/minigzip ${D}${PTEST_PATH}
install ${B}/examplesh ${D}${PTEST_PATH}
install ${B}/minigzipsh ${D}${PTEST_PATH}

Remove buildhost references...
sed -i -e "s,--sysroot=${STAGING_DIR_TARGET},,g" \

-e 's|${DEBUG_PREFIX_MAP}||g' \
 ${D}${PTEST_PATH}/Makefile

}
RDEPENDS_${PN}-ptest += "make"

wrapper script for target

compilation procedure
for testsuite

install test binaries

adapt scripts/path
to target execution

if necessary

declare (undetectable)
 runtime dependencies
 for tests (e.g. make)

Platform (4)

● How is it added to the filesystem ?
● To add package testing to your build,

set the DISTRO_FEATURES and EXTRA_IMAGE_FEATURES

DISTRO_FEATURES_append = " ptest"
EXTRA_IMAGE_FEATURES += "ptest-pkgs"

● Shorthand is the agl-ptest feature for aglsetup.sh
● All ptest files are installed in

/usr/lib/<package>/ptest

Platform (5)

● How is it executed ?
● The "ptest-runner" package installs a

"ptest-runner" which loops through all installed
ptest test suites and runs them in sequence.

How to add tests to AGL
'Apps / Services'

Image: CC BY 2.0, https://www.flickr.com/photos/kevandotorg/

Applications and Services (1)

● For the applications and services, we actually
face multiple areas
● we need to test the highlevel API calls of the

services
● we need to test the application logic ((and UI))
● we want reports on the code coverage

Applications and Services (2)

● For testing the highlevel calls, there is work in
progress to use lua scrips for this task:
● afb-test

● gcov based code-coverage reporting available as well

● Final goal:
make this part of every reference app and run for
each changeset

Applications and Services (4)

● Common to all:
● they need to be executed on the target
● partially with performance penalty (gcov)
● for automation, this means we add a wrapper script

to each service or application to exec the procedure
● This is being called through a qa-testdefinition
● Executed in the CIAT infra

How to run the tests on the target

How to run it on the target (1)

● Manual:
● Platform:

– ptest: either by ptest-runner or
 call run-ptest script directly

– All ptest files are installed in /usr/lib/<package>/ptest
● Applications/Services

– wrapper script required as entry point for CI
● needs to be in predefined location /usr/share/agl-test/<pgkname>.sh

– tbd if this is part of the app templates
– of course manual runs on the terminal or shell as well

How to run it on the target (2)

● Common issues:
● needs to run on target
● we need a common reporting

– agreement is to use the KernelCI/Fuego json format
– alternative: tap

LAVA

● AGL uses LAVA for board/test automation and hosts an instance on
https://lava.automotivelinux.org

● Current remote labs:
● lab-AGL-core
● lab-baylibre
● lab-iotbzh

● Account
requests via
JIRA only

(no LFID)

LAVA Job Definition

sample-job.yaml

● Is a yaml style file
● contains

● metadata for the job
● action/deploy section

– files to be used
● boot section
● test section

metadata, notifier

action / deploy

boot

test

Test section

● One or multiple
● inline
● from git repo
● uses yaml files
● lava-test-* are markers

– required for processing
– used also for

cross-referencing

Test section details (inline/git)

- test:
 [..]
 definitions:
 - repository:
 metadata:
 format: Lava-Test Test Definition 1.0
 name: smoke-tests-basic
 description: "Basic test command for AGL images"
 run:
 steps:
 - agl-basic-test-shell-command
 from: inline
 name: agl-dut-inline-basic
 path: inline/agl-dut-inline-fake-filename.yaml
 - repository: git://git.automotivelinux.org/src/qa-testdefinitions.git
 from: git
 path: test-suites/short-smoke/smoke-tests-basic.yaml
 name: smoke-tests-basic
 - repository: https://git.linaro.org/lava-team/lava-functional-tests.git
 from: git
 path: test-suites/short-smoke/service-check.yaml
 name: service-check

Example: add a 'systemd service up' check

● https://git.automotivelinux.org/src/qa-testdefinitions/tree/
test-suites/short-smoke/service-check.yaml

[...]
run:

 steps:

 - "cd common/scripts"

 - "./service-check-gfx.sh"

https://git.automotivelinux.org/src/qa-testdefinitions/tree/

Example: add a 'systemd service up' check

● https://git.automotivelinux.org/src/qa-testdefinitions/tree/
common/scripts/service-check-gfx.sh

https://git.automotivelinux.org/src/qa-testdefinitions/tree/

Now its your turn:

● We need you to add your service checks !
● in above script

● We need you to add your testcases !
● in qa-testdefinitions

– e.g. can
– e.g. audio playback / reception
– e.g. app lifecycle (install/uninstall/start/stop)

● Next, let's construct two examples and run them on
lava.automotivelinux.org

Let's start small – inline definitions

inline testdefinition

● All is part of the lava job definition (this 'inline')
● Quick and easy, but only usefull for

development & debuging & ad-hoc

inline testdefinition

●

● Let's try:
● https://lava.automotivelinux.org/scheduler/job/917

/resubmit

https://lava.automotivelinux.org/scheduler/job/917/resubmit
https://lava.automotivelinux.org/scheduler/job/917/resubmit

Test definitions from a git repo

Testdefinition from git

● Lava job definition references git repo and test
yaml

● Can be shared and repeated across multiple
instances of lava

● Persistent across single lava jobs

Tests from a git repo

● AGL hosts such a repo under
● src/qa-testdefinitions

● Other sources are e.g.
● https://git.linaro.org/qa/test-definitions.git

https://git.linaro.org/qa/test-definitions.git

sample-test-from-repo

Let's write a sample yaml
metadata:
 format: Lava-Test Test Definition 1.0
 name: sample-test
 description: "Sample"
 maintainer:
 - your.name@isp.net
 os:
 - openembedded
 scope:
 - functional

run:
 steps:
 - lava-test-case sample-pwd --shell pwd
 - lava-test-case sample-uname --shell uname -a

sample-test-from-repo

Or the steps-script is part of the git repo as well:
metadata:
 format: Lava-Test Test Definition 1.0
 name: sample-test-script
 description: "Sample with script"
 maintainer:
 - your.name@isp.net
 os:
 - openembedded
 scope:
 - functional

run:
 steps:
 - "cd common/scripts"
 - "./service-ids-check.sh"

sample-test-from-repo

Or the steps-script is part of the git repo as well:
metadata:
 format: Lava-Test Test Definition 1.0
 name: sample-test-script
 description: "Sample with script"
 maintainer:
 - your.name@isp.net
 os:
 - openembedded
 scope:
 - functional

run:
 steps:
 - "cd common/scripts"
 - "./service-ids-check.sh"

Referencing a git repo in lava job

Sample job in lava ...

● https://lava.automotivelinux.org/scheduler/job/
918/resubmit

https://lava.automotivelinux.org/scheduler/job/918/resubmit
https://lava.automotivelinux.org/scheduler/job/918/resubmit

Call to action!

Action Required !

● For your PLATFORM component (libraries etc.),
make sure there is a Yocto Project compatible
ptest

● For your APPLICATION make sure to have a
wrapper script for the test on the target
available (could be already the case)

● For your APPLICATION: write a testdefinition
yaml and upload it to qa-testdefinitions repo

Whats next ?

Next steps

● Work on application test workflow
● Generalize and make part of app templates
● Enable API and coverage tests

● Join the CIAT calls an tuesdays to discuss
platform and app testing further

QA

Thank you.

Contact:

jsmoeller@linuxfoundation.org

References

● 2017 AMM Talk on writing new tests:
http://bit.ly/2ll5SVy

● ptest: https://wiki.yoctoproject.org/wiki/Ptest
● gcov wip: http://bit.ly/2M4CWMQ
● Writing tests for lava: http://bit.ly/2ywcDgQ

http://bit.ly/2ll5SVy
http://bit.ly/2M4CWMQ
http://bit.ly/2ywcDgQ

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48

